If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t-0.3t^2=120
We move all terms to the left:
16t-0.3t^2-(120)=0
a = -0.3; b = 16; c = -120;
Δ = b2-4ac
Δ = 162-4·(-0.3)·(-120)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{7}}{2*-0.3}=\frac{-16-4\sqrt{7}}{-0.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{7}}{2*-0.3}=\frac{-16+4\sqrt{7}}{-0.6} $
| 5x+3x=8x+3 | | 17=3.14d | | 3+j-3=7 | | 23=3.14d | | X3-4x^2-3x-10=0 | | 11k+7-18k=7 | | 42=6n-6 | | 6-6n=42 | | 4k^2+20=-24k | | (2)/(w+2)=-5 | | x+x*0.1=40 | | 10*6*x=200 | | x÷4.5=8 | | 3r+8=62 | | 2x+2/6-x-1/4=0 | | 7x/5+3=9x/15+5 | | -1.5-0.8x=12.9 | | -14=6-2/3y | | 120-6x=140-10x | | 32-11x=16+5x | | (3x6)-12=15 | | 15+x/8=22 | | w^2-9w+17=0 | | 4(x-2)+5=3(x+4)-6 | | 3x(6-12)=15 | | 475=9x+43 | | -4x-13+6x+33=180 | | 2x(x-9)(7x+2)=0 | | 6y+5+4y+5=140 | | 6y+5+4y+5=180 | | 4=6x+13 | | -2(2x+7)(5x-3)=0 |